Технологии энергосбережения

Использование ресурсов и энергии (часть 1)

ВВЕДЕНИЕ

Успешность развития любой страны, которая определяется благополучием ее граждан, уже сейчас во многом зависит от ее энергообеспеченности и энергонезависимости. В будущем, когда так называемые невозобновляемые первичные источники энергии истощатся, энергетическая безопасность станет одним из важнейших условий независимого существования государства.

Главным условием такой безопасности является не столько расширение и модернизация топливно-энергетического комплекса, сколько энергосбережение, определяемое культурой энергопотребления всего населения. Формирование этой культуры, несомненно, является актуальной задачей мирового масштаба.

Для нашей страны, долгое время развивавшейся путем расточительной эксплуатации своих природных ресурсов, эта задача еще более актуальна. Естественно, что формирование культуры энергопотребления – процесс медленный и сложный, который должен осуществляться всеми доступными государству способами и методами, через средства массовой информации, различные государственные институты, и, в первую очередь, через систему школьного образования.

Формирование культуры энергопотребления школьника, а через него – и его родителей является основной задачей реализации школьного образовательного проекта «Энергосбережение», в рамках которого и разработан материал для предлагаемых элективных курсов. Авторы надеются, что предлагаемое учебное пособие будет способствовать формированию системы знаний в области энергосбережения у широкого круга наших читателей.

Этот материал имеет ярко выраженный межпредметный характер, поэтому может использоваться на уроках физики, химии, географии, истории, технологии и биологии, на его основе возможна организация самостоятельной деятельности учеников: осуществление исследований, создание проектов, написание рефератов, сообщений, докладов.

ЭНЕРГОСБЕРЕЖЕНИЕ – УСЛОВИЕ ПРОГРЕССА

Вся история развития живой природы свидетельствует о том, что источником движения биологической эволюции является постоянно сохраняющееся противоречие между безграничной способностью живых организмов к воспроизводству и ограниченными возможностями материальных ресурсов внешней среды. Вид, получивший преимущество перед другими видами, распространяется до тех пор, пока не сталкивается с недостатками тех ресурсов, которые необходимы именно этому виду. Отсутствие достаточного количества пищи, жилья, жизненного пространства приводит к уменьшению популяции, а иногда и к ее полному исчезновению.

Если в качестве такого вида рассматривать человечество, то основной ресурс, без которого человек не сможет выжить – энергетический. Формула энергетического обеспечения развития современного общества звучит так: чтобы повышать благосостояние общества, необходимо постоянно увеличивать расход энергии. Но это увеличение не может продолжаться бесконечно, любые запасы ограничены, и поэтому рано или поздно они закончатся. И тогда человечество неизбежно столкнется с необходимостью кардинального уменьшения энергетических затрат.

Ярким подтверждением этому являются события 70-х годов ХХ столетия, которые вошли в историю как энергетический кризис. После того, как развитые страны столкнулись с проблемой нехватки энергии, они сделали из этого выводы и уже тогда коренным образом пересмотрели свою энергетическую политику. Предотвращение подобной ситуации возможно только одним путем – необходимо решать вопрос рационального расхода энергии, снижения ее удельных затрат. Данное направление человеческой деятельности получило название – энергосбережение.


Энергосбережение – реализация организационных, правовых, технических, технологических, экономических, информационных и иных мер, направленных на уменьшение объема используемых энергетических ресурсов при сохранении соответствующего эффекта от их использования.

Бережное расходование энергии, ее получение на основе возобновляемых источников энергии – ветра, солнца, биомассы и т.д. позволит уже сегодня решить массу экологических проблем, снизить в несколько раз усилия на постоянные поиски новых ископаемых источников энергии и их освоение.

Это позволит не только зарезервировать для потомков часть запасов ископаемого топлива, но использовать эту категорию ресурсов для неэнергетических потребностей – производства химических продуктов, лекарств, всевозможных препаратов.

Но для этого необходимо понимание всем обществом того, что рост благосостояния населения возможен только в условиях увеличения полезного расхода энергии, роста ее душевого потребления. В любой, даже самой богатой энергоресурсами стране требуется их рациональное использование и экспортирование с целью сохранения для будущих поколений запасов топлива в виде невозобновляемых ресурсов.

В России с ее богатыми природными ресурсами, в первую очередь, топливно-энергетическими, до последнего времени энергетика привычно рассматривалась как единственный источник развития общественного производства. Топливно-энергетический комплекс (ТЭК) дает до сих пор практически от трети до половины всех валютных поступлений в страну. Но такое положение не может сохраняться долго, поскольку энергоемкость промышленного производства и социальных услуг и так оказалась в несколько раз выше общемировых показателей. Это делает нашу жизнь недопустимо энергорасточительной, а нашу продукцию неконкурентоспособной не только на мировом, но и на внутреннем рынке. Только менее одной трети добываемых топливно-энергетических ресурсов идет в конечном итоге на обеспечение прямых и косвенных энергетических услуг населению. Еще одна треть сырьевых ресурсов идет на экспорт, а остальная безвозвратно теряется в самой системе энергетических поставок, не давая при этом никакого полезного эффекта для конечного потребителя.

Нашему обществу необходимо установление соответствия между ростом материального производства, его энергообеспечения и сохранением экологических ресурсов (воды, воздуха, почвы). Эту задачу не решить только за счет повышения квалификации узких специалистов области энергетики. Каждый может и должен научиться рационально расходовать энергию. Это возможно только при освоении широкими слоями населения основ культуры потребления энергетических ресурсов. Эта культура проявляется в повседневной жизни и заключается в обязательном выполнении ряда энергетических ограничений. Цель подобных ограничений – повышение энергоэффективности использования наших природных ресурсов в интересах нынешнего и будущих поколений.

Мы надеемся, что при прочтении предложенной книги наш Читатель вступит в ряды тех, кто заботится о своем будущем и будущем своей страны.

clip_image002

 


1. Энергия

Если вы не думаете о будущем, то его у вас и не будет.

Джон Голсуорси

1.1. Энергетические эпохи

Исторические эпохи можно разделять по разным основаниям: по сменам общественно-экономических формаций, по существованию империй, по основному конструкционному материалу и т.п. Но одной из фундаментальных причин, определяющей и смену экономических формаций, взлет и падение империй и целых цивилизаций, является смена господствующего источника энергии и зависящей от него энерготехники. Поэтому вполне возможно рассматривать историю человечества как последовательную смену энергетических эпох.

Эпоха мускульной энергетики. За этот период источником энергии служила химическая энергия пищи, превращающаяся в мускульную силу человека, а позже и прирученных животных. Тепло солнца, а затем и огня использовалось для обогрева и бытовых нужд – приготовления пищи, выплавки металлов и т.п. В той эпохе следует выделить период, когда мускульная сила приумножалась с помощью простых механизмов – рычага, ворота и т.п., а также период, когда огонь стали получать искусственно – трением. Последнее достижение человека за этот период следует считать принципиально важным в истории развития человечества. Кроме того, в течение этой эпохи невозобновляемые энергоресурсы накапливались. Так продолжалось примерно до VIII-Х веков.

Эпоха механоэнергетики длилась до XVIII века. В этот период человек стал дополнительно использовать механическую энергию возобновляющих энергоресурсов – энергию речной воды и ветра. Для этих целей использовались водяные колеса и ветряные крылья. Человек получил в свое распоряжение силы, во много раз превосходящие его собственные и силы домашних животных.

Развитие техники, получение огня и печного отопления позволили человеку заселять холодные климатические районы Земли.

Энергетические ресурсы в эту эпоху полностью восстанавливались, а окружающая среда оставалась практически в первозданном виде.


Эпоха химической теплоэнергетики. Она еще не закончилась. Главный источник энергии во многих странах – это химическая энергия, выделяющаяся при сгорании органических ископаемых: каменного угля, нефти и т.д. А основная движущая сила – энергия пара или газов, возникающая в тепловых двигателях. Принципиальное отличие этой эпохи – человечество уничтожает ресурсы, доставшиеся ему как результат процессов, протекавших на Земле миллионы лет и имевших своим первоисточником энергию Солнца. Все это сопровождается загрязнением окружающей среды продуктами сгорания и отходами производства. Загрязнение, в том числе и радиационное, окружающей среды начинает тормозить развитие традиционных энергетических технологий. Возникает проблема создания безотходных производств.

Остро встает вопрос создания альтернативной сбалансированной энергетики на возобновляющихся энергоресурсах. Если это состоится, человечество сумеет жить в состоянии динамического равновесия, потребляя столько энергии, сколько можно получить при использовании возобновляющихся энергоресурсов (солнечного излучения, движения воды, ветра и т.п.), возможно, и энергии термоядерных топлив. В соответствии с вырабатываемой энергией и производимым с ее помощью продовольствием будет регламентироваться численность населения Земли и его техническая обеспеченность. Окружающая среда также должна быть приведена в состояние динамического равновесия. И когда она сможет полностью компенсировать то, что человек у нее забирает для своих потребностей, наступит эпоха сбалансированной энергетики.

Но пока это больше фантастика, чем объективная реальность. Об этом свидетельствуют материалы ХV конгресса Мирового энергетического совета, состоявшегося в 1992 году. Основные выводы этого конгресса:

· органические топлива останутся основой энергообеспечения; их абсолютное потребление возрастет при любых реалистичных сценариях. Не просматривается появление ни одного нового источника энергии, по крайней мере, на ближайшие 30 лет;

· в этих условиях первоочередной задачей мирового сообщества является повышение эффективности использования природных энергетических ресурсов, без чего невозможно будет в перспективе решать глобальные проблемы обеспечения устойчивого энергоснабжения и охраны окружающей среды.

Можно сделать общий вывод: в обозримом будущем достижение состояния динамического равновесия между промышленным производством и окружающей средой возможно только через энергосбережение, рациональное ресурсопользование.


1.2. Определение энергии и законов ее превращения

В историческом плане, примерно начиная с начала ХIХ века, понятие «энергия» стало постепенно выделяться из многозначного понятия «сила». Особенно активно этот термин стал звучать в тот период, когда «движущая сила огня» начала использоваться в паровых машинах, где тепло от сжигаемого угля преобразовывалось в механическую энергию поршня, который перемещался под давлением пара. Несколько ранее интенсивность движения тел оценивали «живой силой» – произведением массы тела m на квадрат скорости v его движения (mv2). В 1829 году француз Г.Кориолис уточняет выражение живой силы, поделив его пополам - mv2/2.

Несколько позднее энергию движущей силы стали называть кинетической, а энергию системы, приведенной в «напряженное» состояние (камень поднят над землей и т. п.), – потенциальной.

К середине ХIХ века получил обоснование закон сохранения количества энергии при взаимопревращении ее видов в изолированных системах – всеобщий закон природы, который можно определить так: нельзя получить что-либо, не платя за это (первый закон термодинамики). В этот же период в полной мере осознается выдающаяся роль энергии в жизни и развитии человеческого общества, ей даже присваивают романтический титул «царицы мира».

Естественно, в этот период появились и научные определения энергии. Приведем здесь только одно из них, которое принадлежит Ф. Энгельсу: «энергия – это общая скалярная мера различных форм движения материи».

Заметив, что все виды энергии превращаются в тепло, которое, переходя к более холодным телам, в конечном итоге рассеивается в окружающей среде, излучаясь затем в мировое пространство, ученые в результате ввели новый термин, «тень» энергии – энтропию – меру рассеяния энергии. По мере изучения рассеяния энергии Р. Клаузиусом и другими был сформулирован новый закон – закон снижения качества энергии (возрастания энтропии), ставший позже вторым законом термодинамики: Какие бы изменения не происходили в реальных изолированных системах, они всегда ведут к увеличению энтропии (невозможно помешать рассеянию энергии).

Развитие учения об энергии и ее превращениях постоянно сопровождалось попытками создания теорий и принципов работы оборудования, выходящих за рамки первого и второго начала термодинамики. Самый известный из них – вечный двигатель (перпетуум-мобиле).

Различают два рода вечных двигателей.

Вечный двигатель первого рода, который можно сейчас определить как непрерывно действующую машину, которая, будучи как-то запущенной, совершала бы работу без получения энергии извне.

Вечный двигатель второго рода – тепловая машина, которая в результате совершения кругового процесса (цикла) полностью использует теплоту, получаемую от какого-то «неисчерпаемого» источника (океана, атмосферы и т.п.), для совершения работы.

Объединяет эти двигатели одно общее, весьма существенное свойство – они не могут существовать в реальности, так как двигатель первого рода противоречит первому закону термодинамики, а второй – второму.

Но, пожалуй, наиболее впечатляющей была теория все того же Р. Клаузиуса – теория «тепловой смерти Вселенной». Он попытался распространить положения второго начала термодинамики на всю Вселенную. Согласно этим утверждениям, через какой-то достаточно длительный промежуток времени вся энергия, имеющаяся на Земле и в других частях Вселенной, превратится в теплоту, а равномерное распределение последней между всеми телами Земли и Вселенной приведет к невозможности каких бы то ни было дальнейших превращений энергии. Это и будет означать тепловую смерть Вселенной.

Эта теория была опровергнута рядом исследователей, в том числе,
Л. Больцманом в 1872 году. На основе молекулярно-кинетической теории он продемонстрировал, что закон возрастания энтропии неприменим к Вселенной, потому что он справедлив только для статистических систем, состоящих из большого числа хаотически движущихся объектов, поведение которых определяется изменением параметров состояния (например, для газов – давлением, температурой, удельным объемом), подчиняется законам теории вероятностей. Возрастание энтропии таких систем указывает лишь наиболее вероятное направление протекания процессов.

В период опровержения теории тепловой смерти Вселенной немецкий ученый В. Нернст предположил, что с приближением абсолютной температуры к нулю энтропия тоже стремится к нулю, что впоследствии стало третьим законом термодинамики. Основываясь на этом законе, за нулевую точку отчета энтропии любой системы можно принимать ее максимальное упорядоченное состояние.

Эти три закона и молекулярно-кинетическая теория составляет основу термодинамики, которая в настоящее время является одной из фундаментальных основ современного естественнонаучного знания.


1.3. Виды энергии

В настоящее время имеется научно обоснованная классификация видов энергии. Приведем здесь только те виды энергии, которые к настоящему времени наиболее часто используются как в повседневной жизни, так и в научных исследованиях.

1. Ядерная энергия – энергия связи нейтронов и протонов в ядре, освобождающаяся в некоторых случаях деления тяжелых и синтеза легких ядер; в последнем случае ее называют термоядерной.

2. Химическая (логичнее – атомная) энергия – энергия системы из двух или более реагирующих между собой веществ. Эта энергия высвобождается в результате перестройки электронных оболочек атомов и молекул при химических реакциях.

Когда мы говорим – АЭС (атомная электростанция), это не совсем точно. Точнее было бы – ЯЭС (ядерная электростанция).

3. Электростатическая энергия – потенциальная энергия взаимодействия электрических зарядов, то есть запас энергии электрически заряженного тела, накапливаемый в процессе преодоления им сил электрического поля.

4. Магнитостатическая энергия – потенциальная энергия взаимодействия «магнитных зарядов», или запас энергии, накапливаемый телом, способным преодолеть силы магнитного поля в процессе перемещения против направления действия этих сил. Источником магнитного поля может быть постоянный магнит, электрический ток.

5. Упругостная энергия – потенциальная энергия механически упруго измененного тела (сжатая пружина, газ), освобождающаяся при снятии нагрузки чаще всего в виде механической энергии.

6. Тепловая энергия – часть энергии теплового движения частиц тел, которая освобождается при наличии разности температур между данным телом и телами окружающей среды.

7. Механическая энергия – кинетическая энергия свободно движущихся тел и отдельных частиц.

8. Электрическая (электродинамическая) энергия – энергия электрического тока во всех его формах.

9. Электромагнитная (фотонная) энергия – энергия движения фотонов электромагнитного поля.

Часто в особый вид энергии выделяют еще и биологическую. Биологические процессы – это особая группа физико-химических процессов, в которых нет других видов энергии, кроме вышеперечисленных.

Из всех известных видов энергии на практике непосредственно используются всего четыре вида: тепловая, (около 70–75 %), механическая (около 20–22 %), электрическая (около 3–5 %) и электромагнитная – световая (менее 1 %). Причем электрическая энергия, выполняет, в основном, роль переносчика энергии, так как ее удобно подводить от источника к потребителю по проводам.

Главным источником непосредственно используемых видов энергии служит пока химическая энергия минеральных органических горючих (уголь, нефть, природный газ др.), запасы которой, составляющие доли процента всех запасов энергии на Земле, вряд ли могут быть бесконечными (то есть возобновляемыми).

В декабре 1942 года в США был введен в работу первый ядерный реактор, и появилась возможность использования и ядерной энергии, которую некоторые страны активно используют (Россия, США, Франция).

В настоящее время в ряде стран все шире используется возобновляемые источники энергии, такие как ветровая, речной воды, приливная и др.


Практически в любом технологическом процессе используется несколько видов энергии. Топливно-энергетические балансы при этом составляются обычно по видам используемых топлив, видам энергии для каждого технологического цикла (передела) отдельно. Это не позволяет провести объективное сравнение различных технологических процессов для производства одного и того же вида продукции. Для определения энергоемкости какого-либо технологического продукта было предложено все виды энергии классифицировать на три группы:

1. Первичная энергия Э1 – химическая энергия ископаемого первичного топлива или возобновляемого ресурса с учетом энергетических затрат на добычу, подготовку (обогащение), транспортировку и т.д.

2. Производная энергия Э2 – энергия преобразованных энергоносителей, например: пар, горячая вода, электроэнергия, сжатый воздух, кислород, вода и др., с учетом затрат на их преобразование.

3. Скрытая энергия Э3 – энергия, израсходованная в предшествующих технологиях и овеществленная в сырьевых исходных материалах процесса, технологическом, энергетическом и т.п. оборудовании, капитальных сооружениях, инструменте и т.д.; к этой же форме энергии относятся энергозатраты по поддержанию оборудования в работоспособном состоянии (ремонты), энергозатраты внутри- и межзаводских перевозок и других вспомогательных операций.

Для многих массовых видов продукции величина энергетических затрат в виде скрытой энергии, то есть вносимой оборудованием и капитальными сооружениями, являются относительно незначительной по сравнению с другими двумя видами энергии и поэтому в первом приближении может включаться в расчет по примерной оценке.

Кроме того, существует энергия вторичных энергоресурсов, которая вырабатывается в процессе производства данной продукции, но передается для использования в другой технологический процесс – Э4 .

Суммарные энергозатраты на производство единицы какой-либо продукции в этом случае можно записать в виде:

Эсум = Э1 + Э2 + Э3 – Э4


Суммарные энергозатраты (энергоемкость) называют также технологическим топливным числом (ТТЧ) или энергетическим эквивалентом конкретного вида продукции (стали, кирпича и др.). Примерные значения таких чисел приведены в табл. 1.1.

Таблица 1.1

Энергоемкости (энергетические эквиваленты) различных материалов в виде удельного расхода условного топлива на производство единицы продукции

Screenshot_68


1.4. Основные виды топлива и их характеристики

Состав топлива. Энергетическое топливо по своему физическому составу делится на твердое (кусковое и пылевидное), жидкое и газообразное. Топливо в том виде, в каком оно обычно используется, называют рабочим топливом. Оно состоит из следующих элементов: углерода – С, водорода – Н, кислорода – О, азота – N, серы – Sл, золы – А и влаги – W. Индексом Sл обозначается летучая сера. Остальная сера входит в состав золы топлива. Если выразить в процентах содержания каждого элемента в топливе, то для элементарного состава его рабочей массы будет справедливо равенство:

Ср + Нр + Ор + Nр + Sрл + Ар + Wр = 100 %.

Влага топлива. Влага является вредной (балластной) составляющей состава топлива, уменьшающей его тепловую ценность. Основная часть фактической влажности топлива – это внешняя влага, механически удерживаемая наружной поверхностью фракций топлива. Ряд топлив (торф, дрова, солома и т.п.) имеют способность активно набирать влагу. Для этих топлив вводится понятие условной влажности.

Следует обратить внимание на одну особенность при учете дров. В статистической отчетности они учитываются в плотных кубических метрах. Если по каким-то причинам вес дров приведен в складских кубометрах, то необходимо сделать их пересчет в плотные путем умножения количества складских кубометров на коэффициент 0,7.

Зола топлива. Так же как и влага является балластной частью. Наибольшее количество минеральных примесей содержится в твердых топливах. Это глины (Аl2О3·2SiО2·2Н2О), свободный кремнезем (SiО2), карбонаты (СаСО3, МgСО3 и FеСО3), сульфаты (СаSО4 и МgSО4) и т.д.

Минеральные примеси в жидких топливах (различные соли и окислы) содержатся в небольших количествах (до 1,0 %).В газовых искусственных топливах минеральные примеси содержатся в долях процента и определяются технологией производства газа.

Содержание в топливе «внешнего балласта» (А+W) зависит не только от природы топлива, а также от внешних условий (способа добычи, наличия фазы обогащения, хранения, транспортирования).

Для твердых топлив различают истинную, объемную и насыпную плотность (первая – в объеме плотной массы без пор, вторая – с порами и трещинами, третья – с порами, трещинами и межкусковыми промежутками). Практическое значение для топлив имеют истинная и насыпная плотности, которые и приведены в табл. 1.2.

Теплотворная способность. Под теплотворностью (теплотой сгорания) понимается то количество теплоты (тепла), которое выделяется при полном сгорании топлива. Кроме полной теплотворности, т.е. количества теплоты, выделившегося при полном сгорании единицы топлива (1 кг, 1 м3, 1 моль), в расчетах чаще всего используют низшую теплотворность – Qн – это теплотворность, определяемая при условии, что вода, образующаяся при сгорании топлива, будет в парообразном состоянии. В практических условиях приходится иметь дело с низшей теплотворной способностью рабочего топлива – Qрн – это основной показатель теплоценности топлива, выражаемый в ккал/кг, Дж/кг.

Чтобы можно было сопоставить топлива между собой по их теплоценности, введено понятие условного топлива (у. т.), теплотворность, которого 7000 ккал/кг у. т.

В различного вида отчетных документах расход топлива на каждый вид продукции (выполненных работ) и в целом по предприятию приводится в тоннах условного топлива (т у. т.), натуральное топливо пересчитывается в условное, как правило, по их фактическим тепловым эквивалентам К, определяемым как отношение низшей теплоты сгорания рабочего состояния топлива к теплоте 1 кг у. т.:

К = Qрн/7000.


Приведем значения тепловых эквивалентов для чаще всего используемых на практике топлив (табл.1.2).

Таблица 1.2

Некоторые расчетные характеристики различных топлив

Screenshot_1

Дадим краткие характеристики основным видам топлива.


Угольное топливо. Все ископаемые угли делятся на три основных типа: бурые, каменные и антрациты. Это деление достаточно условное, так как есть угли, которые можно отнести к разным типам.

Бурые угли (марка Б) характеризуются меньшей, чем для других углей, теплотворной способностью (Qрн » 2250 – 4000 ккал/кг).

Их характеризует большой выход летучих веществ (Vг=40–50 %), неспекающийся коксовый остаток и большая влажность, доходящая до 55–58 % у молодых и до 30 % у старых углей. Они легко теряют на воздухе влагу и механическую прочность, превращаясь при этом в мелочь, и обладают повышенной склонностью к самовозгоранию. Их целесообразно использовать как местное энергетическое топливо из-за низкой теплоты сгорания, самовозгорания и растрескивания. Но в современной ситуации, когда цены на топливо резко выросли, при сокращении объемов их добычи, бурые угли перестают быть топливом местного значения.

Каменные угли – это топливо с выходом летучих веществ более 9 %. Они отличаются широким диапазоном теплотворности (Qрн » 3200–6000 ккал/кг) и большим разнообразием марок.

Антрациты по своему геологическому возрасту являются наиболее старыми из всех ископаемых углей, у которых выход летучих веществ менее 9 %, что затрудняет их воспламенение. Высокая теоретическая температура горения (2180 оС) создает трудности для сжигания антрацитов в слое, особенно на механических колосниковых решетках. Теплотворность антрацита Qрн » 5500-6800 ккал/кг. Антрациты обладают наибольшей из ископаемых углей механической прочностью, малым количеством влаги и золы, а также ярко-черным блеском.

Переходными между каменными углями и антрацитами являются так называемые полуантрациты (марка ПА), отличающиеся несколько большей теплотворностью.

Угли классифицируют также по величине – путем грохочения, то есть просеивания и сортировки их разделяют на классы: плита (>100 мм), крупный (50–100 мм), орех (25–50 мм), мелкий (13–25 мм), семечко (6–13 мм), штыб – от немецкого «Staub» – «пыль» (< 6 мм). В этом случае к марке угля добавляют обозначение класса крупности, например, АШ – антрацитовый штыб и др. Но энергетические топлива грохочению практически не подвергаются, и такой уголь называется рядовым. Часть углей, обычно спекающихся, подвергается обогащению – сухому или мокрому – с выделением малозольного концентрата для коксования, также высокозольного промпродукта для энергетических целей. Еще одной разновидностью твердого топлива можно назвать горючие сланцы с зольностью до 70 %. Это малоценное рабочее топливо.


Торф. Это относительно молодое геологическое образование, создающееся в результате отмирания болотной растительности при избыточном количестве влаги и недостаточном доступе воздуха. По внешнему виду торф представляет собой волокнистую (при малой степени разложения) или пластическую (при высокой степени разложения) массу коричневого или черного цвета. Торф в естественном состоянии содержит большое количество воды, чем он резко отличается от других видов твердого ископаемого топлива – бурого и каменного углей.

Под торфяным топливом, при способах добычи его с воздушной сушкой, понимается воздушно-сухой торф, с влажностью до 50 % – для кускового, до 53 % – для фрезерного торфа и зольностью до 23 %. Торфяное топливо, которое поступает потребителю с его действительными влажностью и зольностью, называется натуральным. Количество сухой массы в нем в зависимости от влажности бывает весьма различно. Поэтому все весовые расчеты по поставкам топлива должны производиться на условную влажность (33 % для кускового и 40 % для фрезерного торфа).

В настоящее время при производстве торфа широко используется процесс брикетирования. Это процесс уплотнения и упрочнения порошкообразного, мелкого материала при прессовании в замкнутом пространстве. Торфяные брикеты обычно имеют форму цилиндра или призмы, изготовляются из торфяной крошки (фрезерного торфа) и используются в качестве бытового топлива или в топках коммунальных и промышленных котельных. По своему тепловому эффекту 1 т торфяных брикетов может заменить до 3 складских м3 дров. Если при производстве брикетов не используется искусственная сушка торфа, то получаемый продукт называется полубрикетом. Из торфа производят также кокс.

Значение теплоты сгорания Qрн для различных видов торфяного топлива обычно составляют, ккал/кг:

торф фрезерный – 2000…2600;

торф кусковой – 2200…3000;

брикеты торфяные – 3500…4200;

полубрикеты торфяные – 2800…3500;

кокс торфяной – 7250.


Древесное топливо. Состоит в основном из клетчатки С6Н10О5 (50–70 %) и межклеточного вещества лигнина (20–30 %). Ценность древесного топлива состоит в малой зольности (до 1%), отсутствии серы и большом содержании горючих летучих веществ (до 85 %). Возможная значительная влажность (Wр), до 60 %, существенно снижает его теплотворную способность. Иногда для дров вводят понятие абсолютной влажности, определяемой по формуле:

W = (G – G1) × 100/G1, %,

где G и G1 – вес (кг) влажной и высушенной до постоянного веса древесины при T = 100–105 оС.

Соответственно, по этой влажности дрова подразделяются следующим образом:

1. Воздушно-сухие, с содержанием влаги до 25 %.

2. Полусухие, с содержанием влаги от 26 до 30 %.

3. Сырые, с содержанием влаги более 50 %.

Отходы растениеводства. По своей структуре и топливным характеристикам близко подходят к древесине. Большинство из них отличаются относительно высокой теплотворной способностью (табл. 1.3). Для сравнения приведены данные по городскому мусору.

Таблица 1.3

Средние значения Орн для растительных отходов, ккал/кг

Screenshot_2


Жидкое топливо. Исходным сырьем практически для любого жидкого топлива служит нефть. Иногда это могут быть продукты (смолы, дистилляты), получаемые при термической переработке твердых топлив. Рассмотрим здесь некоторые продукты переработки нефти.

Топочные мазуты. Классифицируются по содержанию серы на малосернистые (Sр £ 0,5–1,0 %), сернистые (Sр £ 2 %) и высокосернистые (Sр £ 3,5 %). Топочные мазуты выпускаются нескольких марок М200, М100 и т.д. Цифра показывает отношение времени истечения 200 мл мазута при 50 оС ко времени истечения такого же количества дистиллированной воды в строго определенных условиях. Из этого видно, что мазуты – очень вязкие жидкости, их вязкость не менее чем в 150 раз выше, чем у воды. Для перекачки мазутов по трубопроводам и распыливания форсунками мазуты надо подогревать до 100–140 оС.

Моторные топлива. Это топлива для двигателей внутреннего сгорания, классифицируют по их испаряемости. Она характеризуется температурами, при которых выкипает 10, 50 и 90 % объема топлива, а для бензинов указывается и температура конца кипения. По испаряемости топливо делится на легкое и тяжелое. К легким относится бензин, лигроин, керосин. Марка бензина определяется его октановым числом, например, бензин А-92, А-95. Чем выше октановое число бензина, тем ниже склонность данного топлива к детонации. Детонацию можно определить упрощенно как предельный (взрывной) режим горения топлива.

Газообразное топливо. Это естественные или искусственные газы. Первые добывают из скважин газовых месторождений или как попутные при добыче нефти. Вторые получают в процессе термического разложения твердых или жидких топлив на специальных заводах, или как попутные при коксовании углей, или в биогазовых установках при переработке органических отходов и стоков (бытовых, животноводческих и др.).

Природные газы отличаются высокой теплотворностью и полным отсутствием оксида углерода. Главное преимущество газообразного топлива состоит в удобстве транспортирования его по трубопроводам на большие расстояния и простота сжигания. Попутные газы газонефтяных месторождений содержат ядовитый и коррозионно-активный сероводород.

Нередко используют сжиженный газ, получаемый при первичной переработке нефти и попутных нефтяных газов. Температура конденсации при атмосферном давлении этих газов обычно ниже 0 оС; при 20 оС давление паров этих газов составляет от 2 до 8 атм. Поэтому эти газы транспортируют в цистернах или баллонах под небольшим давлением менее 20 атм.

Теплотворность Qрн некоторых газов, ккал/нм3:

природный газ – 8000;

сжиженный газ (пропан) – 21700;

сжиженный газ (бутан) – 28200.


1.5. Потери тепла при сжигании топлива

Тепловой баланс любого теплотехнического агрегата характеризуется равенством между количеством подведенной и расходной теплоты: Qприх = Qрасх. Обычно тепловой баланс установки составляют на единицу массы сжигаемого топлива – 1 кг твердого или жидкого топлива либо на 1нм3 газообразного топлива. Основная составляющая приходной части баланса это теплотворность топлива Qрн. Остальные составляющие обычно невелики – физическая теплота топлива, холодного воздуха и др. Расходуемое тепло можно определить суммой полезно используемого тепла Q1 и тепловых потерь:

Qрн = Q1 + Q2 + Q3 + Q4 + Q5 + Q6, ккал/кг (нм3),

где Q2 – потеря тепла с уходящими газами;

Q3 – потеря тепла с химической неполнотой сгорания топлива;

Q4 – потеря тепла с механической неполнотой сгорания топлива;

Q5 – потеря тепла в окружающую среду;

Q6 – потеря с физическим теплом шлаков.

Уравнение (для твердого топлива) теплового баланса, выраженное в процентах от Qрн,:

g1 + g2 + g3 + g4 + g5 + g6 = 100 %.

Полезное тепло g 1 – это тепло выработанной тепловой энергии в горячей воде для водогрейного котла или в паре для парового котла и т.д.

Потерю тепла с уходящими газами можно определить как разность теплосодержаний, уходящих из котла газов и холодного воздуха:

Q2 = Qух – Qв.

Даже при достаточно низкой температуре уходящих газов 110–120 оС величина Q 2 составляет не менее 8–10 %.


Потеря тепла от химической неполноты горения в котле g3 зависит от содержания продуктов неполного горения в дымовых газах (СО, Н2,СН4 и др.). При правильно организованном процессе горения величина g3 близка к нулю. Но в котлах со слоевыми топками и ручной заброской топлива (ручные топки) организовать полное сгорание топлива невозможно. В этом случае потери g3 в зависимости от вида топлива могут составлять следующие значения (в %):

антрациты – 2,0;

каменные угли – 3,0;

бурые угли – 3,5;

торф – 3,0;

щепа – 2,5;

дрова – 3,0.

Потеря тепла от механической неполноты сгорания g4 обуславливается недожогом топлива в шлаках, уносе (золе). Применительно к самым несовершенным топкам величина g4 составляет от 7 до 12 %.

Потеря тепла в окружающую среду g5 зависит от большого количества факторов: вида и состояния обмуровки котла, производительности агрегата, наличия так называемых хвостовых (конвективных) поверхностей нагрева и т.п. Для котлов малой производительности при их номинальной нагрузке g5 равно не менее 2 %. При этом со снижением фактической нагрузки котла величина g5 возрастает.

Потеря с физическим теплом шлаков g6 особенно заметна опять же для ручных топок – 1,0–1,5 %.

Отношение полезно использованного тепла в котле к располагаемому называется коэффициентом полезного действия (брутто). Он может быть определен: по прямому тепловому балансу:

h = 100 Q1 / Qрн, %,

по обратному тепловому балансу:

h = 100 åg, %,

где åg – сумма тепловых потерь котла, %.

Для ручной топки h котла приближенно составит:

h = 100 – 9 – 3,5 – 11 – 3 – 1 = 72,5, %.

Коэффициент полезного действия, с учетом расходов электроэнергии и тепла на собственные нужды, называется КПД нетто:

hн = h gсн, %,

где gсн – общий расход энергии (электрической и тепловой) на собственные нужды котла, отнесенный к располагаемому теплу, %.

Нормативы расходы тепла на собственные нужды, в % от номинальной нагрузки котельной, составляют:

газообразное топливо – 2,3–2,4;

слоевые и факельно-слоевые топки – 2,6–5,1;

жидкое топливо – 3,9–9,7.

Удельные расходы электроэнергии на выработку и транспортирование тепла для отопительных котельных составляет 18–20 кВт·ч/Гкал, или около 1,7 %.

Таким образом, в настоящее время в котельных с котлами со слоевым сжиганием топлива КПД нетто составляет не более

hн = 72,5 – 5 – 1,7 = 65,8, %,

то есть полезно используется только около половины сжигаемого топлива.


1.6. Производная энергия

К производной энергии относятся энергоносители в виде пара, горячей воды (тепловой энергии), сжатого воздуха, электроэнергии, кислорода и др., которые широко используются в самых различных технологических процессах, а также в быту. Для их производства применяются, как правило, первичная энергия (топливо), а также соответствующие виды производной (преобразованной) энергии.

Для производства преобразованной энергии используется различные энергоисточники:

· Традиционные – это тепловые электрические станции (ТЭС), атомные (ядерные) электрические станции (АЭС), котлы, компрессорные установки и т.д.;

· установки на вторичных ресурсах (котлы-утилизаторы, тепловые насосы, холодильники и т.п.);

· нетрадиционные (альтернативные) – ветроэнергоустановки, биореакторы, гелиоподогреватели и др.

Работоспособность (или, иначе говоря, энтальпию, т.е. теплосодержание) любого из этих теплоносителей определяет сумма их внутренней энергии и потенциальной энергии источника.

Дадим краткую характеристику основных видов энергоносителей.

Вода. Жидкость без запаха, вкуса, цвета, химическая формула Н2О. Плотность 1000 кг/м3 при температуре около 4 оС. При нормальном атмосферном давлении в 1 атм при 0 оС превращается в лед, при 100 оС – в пар. Вода – обязательный компонент практически всех технологических процессов, как промышленных, так и сельскохозяйственных. Особенно широко вода применяется в теплотехнике как энергоноситель для производства и переноса тепловой энергии. В нашей стране с использованием горячей воды разработаны и реализованы многочисленные централизованные системы теплоснабжения для отопления и горячего водоснабжения жилых, социальных и производственных зданий и технологических потребителей. Распространенный источник теплоснабжения – теплоэлектроцентрали (ТЭЦ) и отопительные и производственно-отопительные котельные.

Пар водяной. Это вода в газообразном состоянии. Различают насыщенный пар, находящийся в термодинамическом равновесии с жидкостью (водой), и перегретый пар, имеющий температуру Тп, больше температуры насыщения Тн для данного давления. Водяной пар – рабочее тело паровых турбин и машин. Пар также широко используется как высокотемпературный теплоноситель для сушилок, термической обработки и др.

Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, которая называется уравнением состояния. Параметры простейших систем, которыми могут считаться газы, пары и жидкости, связаны термическим уравнением состояния вида:

¦(р, u, Т) = 0.

На основании теории, разработанной М.П. Вукаловичем и др., было получено численное уравнение состояния водяного пара, на основании которого составлены таблицы и диаграммы свойств водяного пара для различных температур и давлений. Эти диаграммы и таблицы используются для практических расчетов всех теплоэнергетических процессов, в которых используется водяной пар.


Электрическая энергия (электричество). Определяют как совокупность явлений, в которых проявляется существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц.

Электрическая энергия имеет ряд неоспоримых преимуществ по сравнению с другими видами производной энергии: возможность получения энергии как от элемента размером со спичечную головку, так и от турбогенераторов размером с дом; сравнительная простота ее передачи на расстояние и легкость преобразования в энергию других видов.

Основная проблема – это ее хранение. Здесь возможности ограничены.

В настоящее время трудно представить себе жизнь без электроэнергии. Так, в США на долю электроэнергии приходится около 45% используемой энергии. Электроэнергия находит применение и в электромобилях, и в производстве водородного топлива, в том числе, и из воды.

Воздух. Это смесь газов, из которых состоит атмосфера Земли: азот (78,08 %), кислород (20,95 %), инертные газы (0,94 %), углекислый газ (0,03 %). Плотность – 1,293 кг/м3, растворимость в воде 29,18 см3/л. Благодаря кислороду, содержащемуся в воздухе, он используется как химический агент в различных процессах (сжигание топлива, выплавка металлов из руд, получение многих химических веществ). Воздух – важнейшее промышленное сырье для получения кислорода, азота, инертных газов. Используется как теплоизоляционный и звукоизоляционный материал.

Кроме всего этого, сжатый воздух – рабочее тело для совершения механической работы (пневматические устройства, струйные и распылительные аппараты и др.).

Кислород. Химический элемент, в свободном виде встречается в двух модификациях – О2 («обычный») и О3 (озон).

О2 – газ без цвета и запаха, плотность – 1,42897 кг/м3. В химической практике самый активный неметалл. С большинством других элементов (водородом, многими металлами и др.) кислород как окислитель взаимодействует непосредственно и с выделением энергии. Процесс окисления по мере повышения температуры и роста скорости реагирования переходит в режим горения.Разновидностью последнего можно назватьвзрыв (детонацию).

Кислород (или обогащенный им воздух) применяются в металлургии, химической промышленности, при космических полетах, подводном плавании, в медицине. Жидкий кислород – окислитель ракетного топлива.

Использование кислорода в качестве окислителя вместо воздуха многократно увеличивает скорости горения (окисления), снижает объем образующихся продуктов горения. При этом резко возрастает интенсивность выноса твердых продуктов горения из зоны реакции (на 1–2 порядка), что существенно осложняет решение проблем охраны окружающей среды.


1.7. Технологические схемы производства энергии

Практически все энергетическое топливо используется для получения тепловой энергии в виде пара и горячей воды. Исключение составляет топливо, которое непосредственно используется в системах печного, калориферного отопления, а также с использованием газовых горелок инфракрасного излучения, когда продукты сгорания природного газа поступают непосредственно в отапливаемое помещение.

Устройства, предназначенные для получения пара или горячей воды повышенного давления за счет теплоты, выделяемой при сжигании топлива, или теплоты, подводимой от посторонних источников (обычно с горячими газами), называют котлами. По производимой продукции они делятся на паровые и водогрейные.

Котлы, использующие (утилизирующие) теплоту отходящих из технологических печей газов или других основных и побочных продуктов, называют котлами-утилизаторами.

Котлы, снабжающие паром турбины, называют энергетическими.

Целесообразно использование парового котла вначале как энергетического, а затем уже в качестве производственного и/или отопительного.

С целью обеспечения стабильной и безопасной работы котла предусматривается установка вспомогательного оборудования, предназначенного для подготовки и подачи топлива, подачи воздуха, подготовки подачи воды, отвода продуктов сгорания топлива и их очистки от золы и токсичных примесей, удаление золошлаковых остатков топлива. В зависимости от вида сжигаемого топлива и других условий некоторые из указанных элементов могут отсутствовать.

В качестве источников тепла для котлов используются природные и искусственные топлива, отходящие газы технологических печей и других устройств, ядерная энергия, а также возобновляемые источники энергии – солнечная энергия, ветер, вода рек и др. Значительная часть тепловой энергии превращается в электрическую на специальных производственных комплексах – электрических станциях.

Энергию водного потока преобразовывают в электрическую на гидроэлектростанциях (ГЭС). Водный поток вращает рабочее колесо турбины, которое приводит в движение ротор генератора, вырабатывающего электрический ток.

На тепловых электростанциях (ТЭС) турбины вращает пар, вырабатываемый в котлах. На ТЭС производится до 70-80 % мировой электроэнергии. В настоящее время, кроме паровых турбин, на ТЭС используются газотурбинные установки. Получают распространение и электростанции с двигателями внутреннего сгорания на самых различных видах топлива – дизельное, природный газ, биогаз и др. Коэффициент полезного действия современных ТЭС с паровыми турбинами достигает 40 %, с газовыми турбинами пока не более 37 %. Освоены также комбинированные установки с паровыми и газовыми турбинами (парогазовые установки – ПГУ) мощностью 250 МВт. Коэффициент полезного действия ПГУ может достигать 43%. В системе ПГУ топка парогенератора работает под давлением, а уходящий газ направляется в газовую турбину.


С 50-х годов ХХ века атомные электростанции (АЭС) также имеют паротрубный привод электрогенератора и отличаются от традиционных ТЭС лишь типом парогенератора (рис. 1). В целом по всему миру АЭС вырабатывают до 16 % электроэнергии.

По виду отпускаемой электроэнергии паротурбинные ТЭС делятся на конденсационные электрические станции (КЭС) и теплоэлектроцентрали (ТЭЦ). На КЭС установлены турбогенераторы конденсационного типа, они производят только электроэнергию.

ТЭЦ отпускают внешним потребителям электроэнергию и тепловую энергию с паром и горячей водой. Поскольку ТЭЦ связана с потребителями достаточно протяженными трубопроводами пара и горячей воды, это вызывает повышенные тепловые потери.

В бывшем СССР предпочтение отдавалось крупным станциям. Например, установленная мощность Рефтинской ГРЭС (государственная районная электростанция) составляет 3800 МВт. При этом сжигается очень высокозольный экибастузский уголь из Казахстана.

clip_image002

Рис. 1. Принципиальное устройство атомной станции

Для производства сжатого воздуха используются различные компрессорные установки с электроприводом. При производстве дутья для доменных печей металлургических предприятий (доменного дутья) используются компрессоры с турбоприводом. В этом случае значительно снижаются удельные расходы электроэнергии.

Кислород получают, чаще всего, из воздуха посредством реализации цикла глубокого охлаждения и разделения воздуха. К настоящему времени созданы воздухоразделительные установки различного назначения. Основа комплексного цикла разделения воздуха – процесс ректификации. Это физический способ, базирующийся на различии в температурах кипения отдельных компонентов воздуха. Этот процесс реализуется за счет низких температур. Хладоагентом, чаще всего, служит сам перерабатываемый воздух.

С этой целью применяют несколько способов:

· использование расширительной машины (детандера),

· использование эффекта Джоуля–Томсона.

Последний заключается в том, что при дросселировании (т.е. снижении давления) сжатого воздуха в определенных условиях происходит понижение его температуры. В зависимости от схемы воздухоразделительной установки возможно получение технологического кислорода, содержащего 95 % кислорода, или технического кислорода, содержащего 99,5 % кислорода.